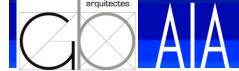


El CAP Roger de Flor

Fecha: 15 de mayo de 2.007

CONSTRUMAT

Francisco Gallardo. Arquitecto. GB Arquitectos Xavier Martínez. Ingeniero. AlA Instal·lacions Arquitectòniques



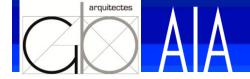
- 1. Introducción. Proyecto SARA
- 2. El CAP Roger de Flor.
 - 1. Generalidades
 - 2. Arquitectura
 - Idea conceptual
 - 3. Instalaciones
 - Climatización y agua calienta
 - Electricidad y alumbrado
 - Gestión y control
- 3. Previsiones de funcionamiento
- 4. Material complementario

Introducción histórica

El Centro de Asistencia Primaria Roger de Flor es una iniciativa multidepartamental del año 2.003 donde participen:

Servei Català de la Salut

Eficiencia d'instal·lacions Sanitàries

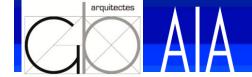

Institut Català d'Energia

Departament de Medi Ambient i Habitatge

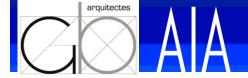
El proyecto entró a formar parte del Proyecto Europeo SARA, proyecto coordinado des del GESP de la UB

Sustainable

Architecture applied to


Replicable public

Acces buildings


Proyecto de demostración co-financiado por la Comisión Europea (TREN/04/FP6EN/S07.31838/503188)

El objetivo del SARA es la construcción de 7 edificios:

- De alto rendimiento energético,
 - > 30% reducción en emisiones de CO₂
 - reducción en el consumo de fuentes no renovables de energía
- Replicabilidad,
 - costos razonables:
 - 5% del total del coste de los edificios,
 - <50 Euros /m² de sobre coste
 - Innovación con tecnología comercial

SARA se aplica en los siguientes campos:

Arquitectura

- Orientación
- Sombras y protección solar
- Aprovechamiento de la luz y ventilación natural
- Inercia térmica
- Materiales de baja k

<u>Instalaciones</u>

- Sistemas de alto rendimiento
- Solar activa y pasiva
- Ventilación inteligente
- Fuentes menos contaminantes...
- Gestión, control, monitorització integrada
- Ahorro de agua

> Funcionamiento - generalidades

Los conceptos SARA se reflejan en los siguientes puntos:

Protecció solar i control lluminós al pati interior

Cobriment superior del pati de llums mitjançant lamel les percontrolar i assolir una millor il luminació natural a les sales d'espera

Energia tèrmica de font renovable

Col·lectors solars tèrmics, situats a la coberta, per la generació d'aigua calenta sanitària. També donen suport al sistema de calefacció

Electricitat de font renovable

Plaques
fotovoltaiques que
geneien electricitat.
A més, actuen com
a protectores solars
per reduir les
necessitats tèrmiques

Obertures de façanes i llum

Disseny de façanes per aprofitar la llum natural i col·locació de proteccions solars a la façana sud-oest per protegir-se de les radiacions indesitjades

Millora de l'aïllament dels tancaments

Façana i coberta amb un bon aillament natural de suro. Vidres amb un nivell att d'aillament mitjançant tractament superficial especial i cambra d'aire

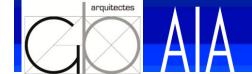
Aprofitament d'aigües

Dipòsit d'aigua situat a la planta soterrània de l'edifici per acumular aigua de pluja i dels rentamans que es reutilitzarà per a cistemes d'inodors

Sistema de gestió tècnica centralitzada:

Sensors d'il·luminació, temperatura, humitat i de presència que permeten el control centralitzat amb l'objectiu de reduir el consum energètic final

Aire primari


- Recuperació de la calor amb bescanviadors
- Tractament de la humitat amb unitats d'alta eficiència
- Utilització de la seva energia en èpoques internèdies (primavera, tardor) perfer climatització natural (free cooling).

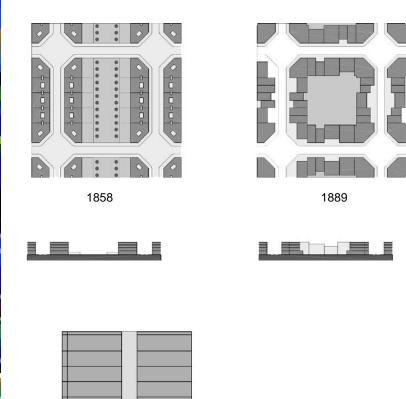
Il luminació

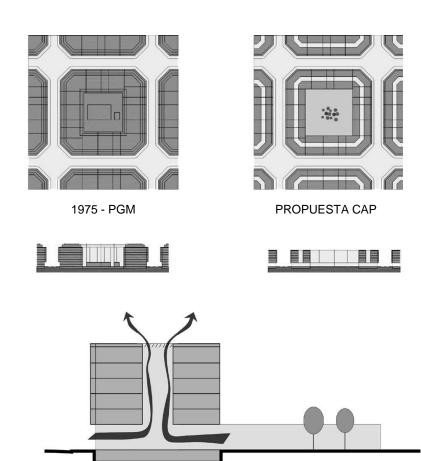
Estalvi del 25 % d'energia gràcies a l'ús de fluorescents amb balast electrònic

Climatització

Bitalvi del 25 % d'energia gràcies al tipus de calefacció i refrigeració amb sostre radiant que redueix les necessitats tèrmiques

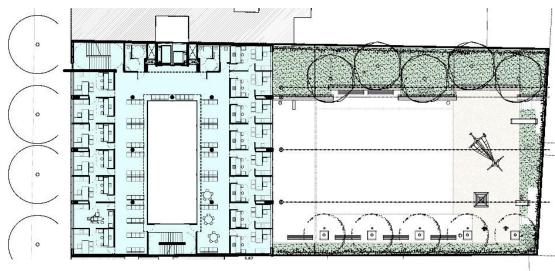
CAP Roger de Flor: Eixample de Barcelona



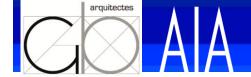

Arquitectura: diseño conceptual

Evolución de la urbanización del Eixample de Barcelona

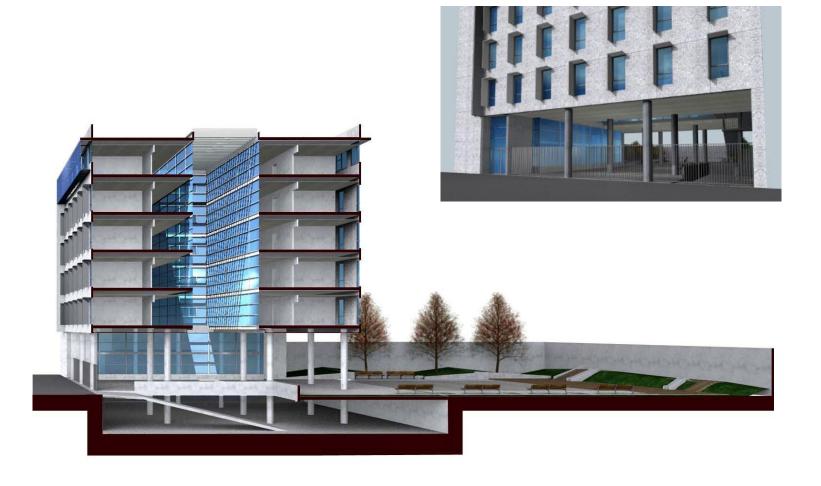
SOLUCIÓN BIO-CLIMATICA


SOLUCIÓN TRADICIONAL

> Arquitectura: organización del centide l'eixample



Planta



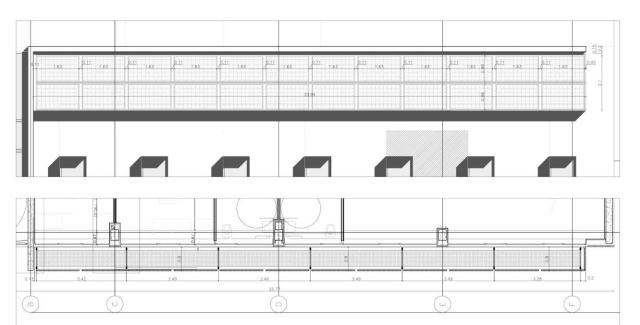
Sección



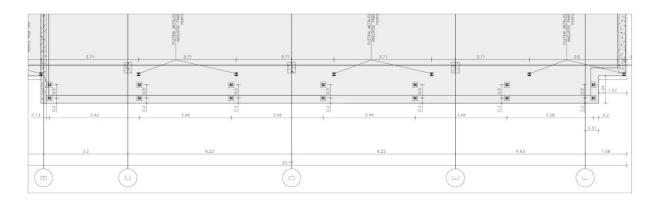
Simulaciones 3D

Tratamiento de fachadas – análisis sombras

Tratamiento de fachadas – detalles

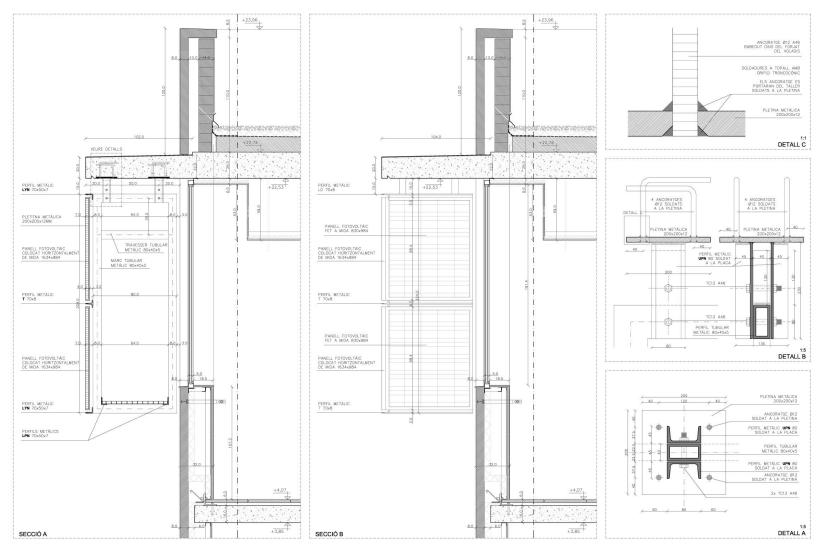


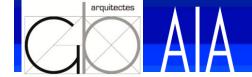
> Arquitectura – detalles constructive de l'e

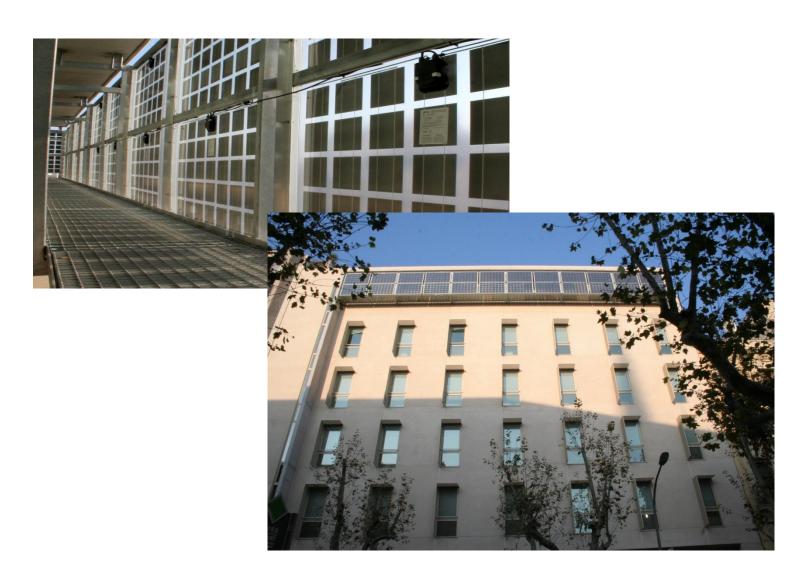


Fachada fotovoltaica

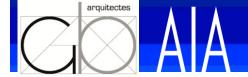
MUNTANT ESTRUCTUR SUPORT E 1:20



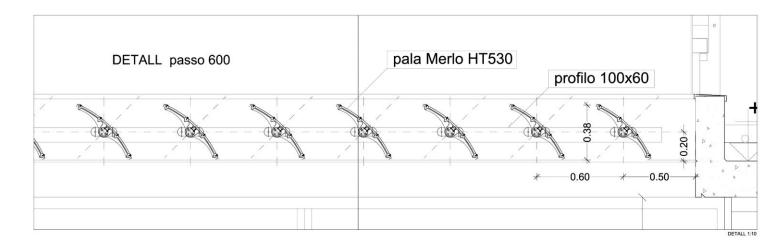

> Arquitectura – detalles constructivo de l'e

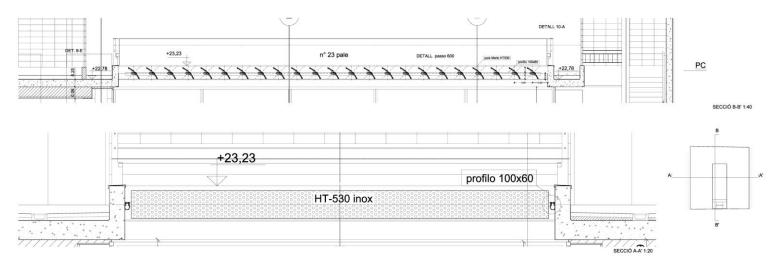


Fachada fotovoltaica

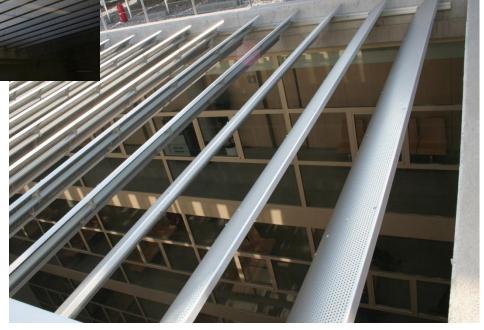


Fachada Fotovoltaica




Arquitectura – detalles constructivo de l'e

Lamas patio interior



Lamas patio interior

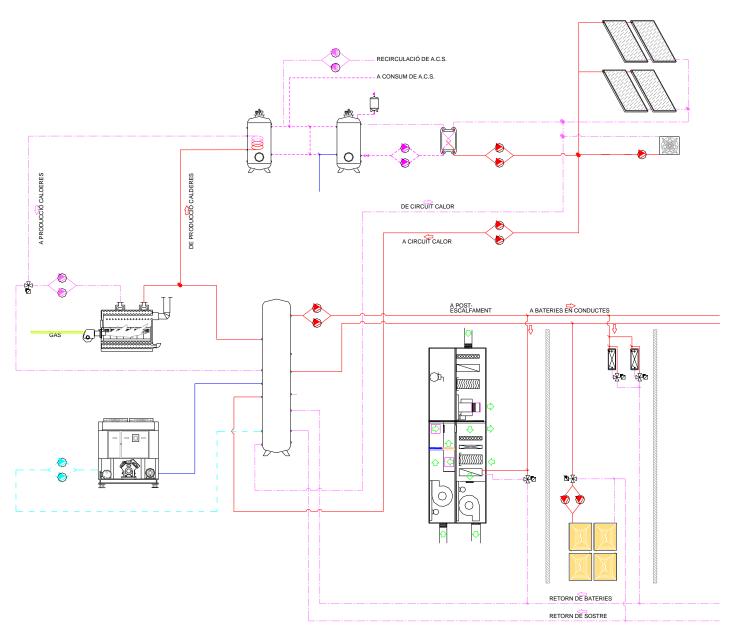
Ingeniería: Climatización

CLIMATITZACIÓN

Cambio de filosofía en CAPs

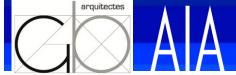
- Zonificación: Dos zonas Multizona
- Sistema: Aire Agua (techo radiante)
- Aire exterior :Recuperación o free cooling

Free cooling

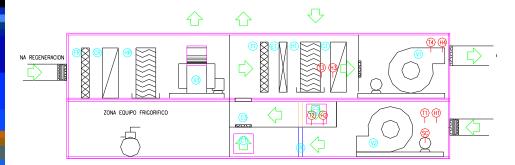

- + Recuperación (sobre refrigerante)
- + Deshumedecimiento (CI-Li)

Ahorro de 33.000 kWh/año y rendimiento (COP) superior a 4

→ Ingeniería – Climatización - Esquem de l'olxample

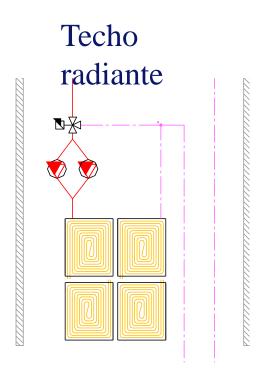


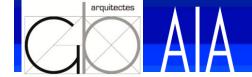
Climatización – Producción de frío



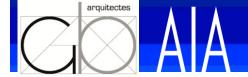
Refrigeración: DT=15-18

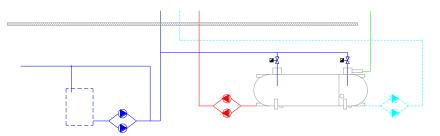
Climatización – Tratamiento de aire de l'e

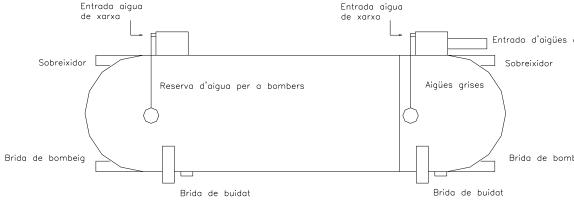




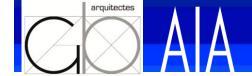
Deshumectadora con ClLi

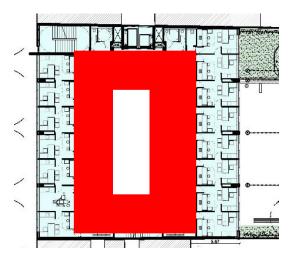

AP Roder de Flor


Energía Solar térmica: HSW y Calefacción


* 11.500 kWh/ año - 65% HSW consumo

AGUAS

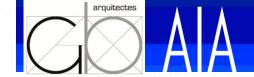




Ahorro agua $-380 \text{ m}^3/\text{año}$

AP Roder de Flor

LIGHTNING



Control de iluminación en las salas de espera de acuerdo a la luz del sol - complementando el atrio lamas - con techo tratamiento separado

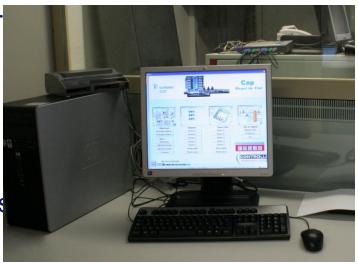
Instalaciones: Electricidad y relámpago de l'e

ELECTRICIDAD: Solar fotovoltaica

10 kWp la energía fotovoltaica: montado en la fachada y cubierta

kWh/año igualdad del CAP consumo lumínico

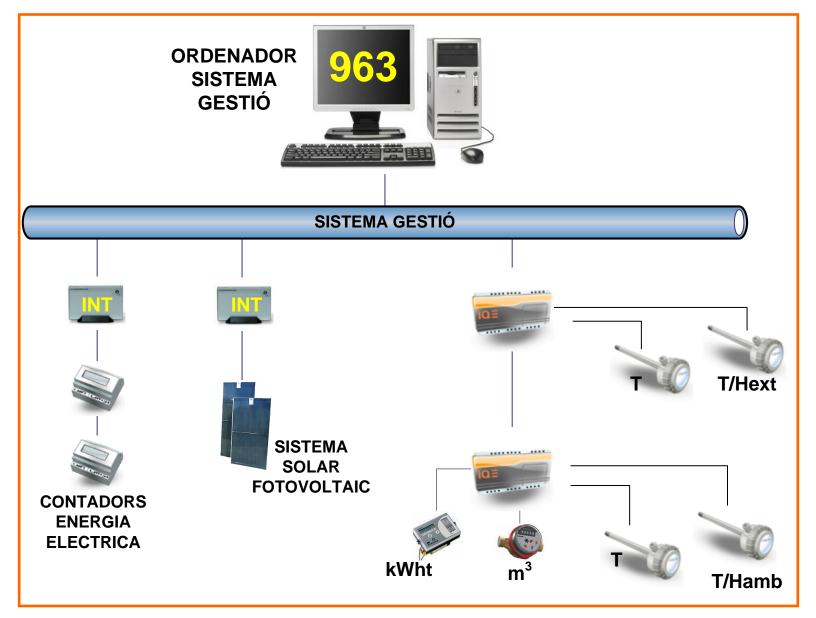
Ingeniería – control y gestión



CONTROL

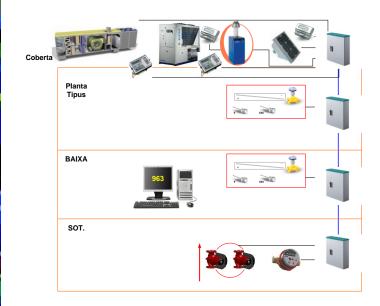
Implantación de unos sistema de gestión del edificio que coordinen todos los elementos instalados

- Derivados de las características del edificio.
 - Control de los elementos productores
 - Control del techo radiante
 - Control de la aportación de aire exter
 - Control del alumbrado
- Vinculados al proyecto SARA
 - Adquisición de datos energéticos
 - Intercambio de datos con instituciones
 - Plafón informativo



2. CAP ROGER DE FLOR

ngeniería – Control Arquitectura del sistema

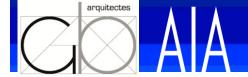


Estructura de implantació

Estructura Sistema Gestión

- Cuadros de Control
 - Planta Cubierta
 - Producción Calor/Frío
 - Climatizadores/Deshumectadores
 - Producción ACS
 - Producción Fotovoltaica
 - Plantas Tipo
 - Climatización con techo radiante
 - Planta Soterrano
 - Fontanería
- Ordenador Lugar Supervisión

Previsiones ahorro


PREVISIONES DE FUNCIONAMIENTO

DATOS GENERALES

- Consumo de referencia: 660.000 kWh/año (220 kWh/m²/año)
- Objetivo de consumo: 446.598 kWh/año (148 kWh/m²/año)

Objetivo de ahorro: 213.402 kWh/año --- 32%

CAP Roger de Flor

DATOS INDIVIDUALES

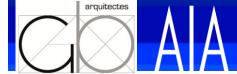
- Sistema climatización 33.000 kWh/año
- •24 m² captadores térmicos 11.500 kWh/año
- Agua 380 m³/año
- 10 kWp fotovoltaico 12.000 kWh/año

. ANALISIS ENERGETICO. Realidades

> Datos de consumo

Nombre del contador descripción

Marzo


Consumo

kWh

Febrero

Consumo

kWh

16-may

Consumo

kWh

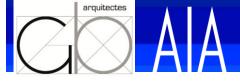
Abril

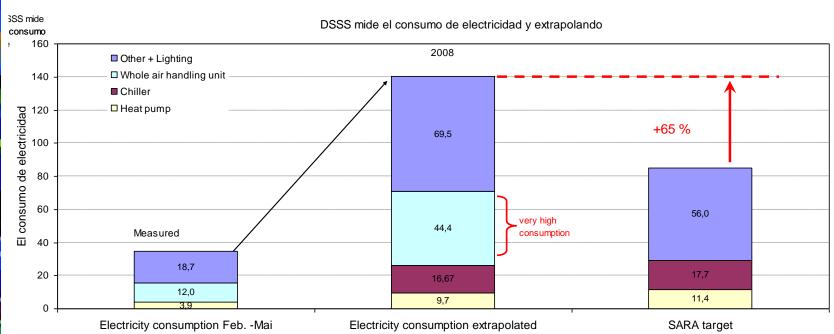
Consumo

kWh

ES_Qeb	Consumo total de electricidad del edificio [MWh]	35000	33000	29000	14000
HS HAT	Medidor de energía caldera de calefacción [kWh]	11	1	5	8
CS_QeHVAC	Toda la electricidad HVAC [kWh]	17496	15905	14020	7460
CS_Qce	Electricidad chiller [kWh]	0	52369	3583,2	2314,7
CS_Qct	Medidor de energía de refrigeración [kWh]	21	17	21	2
AHU_Qevs	AHU Electricidad todo el sistema de ventilación [kWh]	10192	10481	10040	5150
Qce	el consumo de energía eléctrica [kWh]	0	5769	3583,2	2314,7
Qhg	Consumo de Gas / m³	165	165	142	112
QH_ Recoger	Colectores solares de energía de calefacción [kWh]	131	55	54	24
Qel_otros	El consumo de electricidad otros [MWh]	35000	33000	29000	14000
Qh	El consumo de energía de calefacción	11414	21385	10011	2110
Qc	Enfriamiento del consumo de energía [kWh]	21	17	21	2

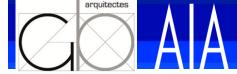
> Extrapolación de consumo


Mide e	l consumo
--------	-----------


	Mide el consumo				Extrapolación			
	Febrero	Marz o	Abril	1st - 16th Mayo	Total	Total [kWh/m²]	Factor anual estimad o	Total annual
Enfriamiento del consumo de Energia[kWh]	21	17	21	2	61	0,00	simulatio n	50,00
Calefacción suministrada bomba de calor [kWh]	11414	2138 5	1001 1	2110	44920	14,97	2,50	37,43
Calefacción suministrada por caldera de gas[kWh]	1893	1893	1629	1285	6698	2,23	3,71	8,29
Agua caliente sanitaria (assumed = Qhg + QH_collect)	2024	1948	1683	1309	6962	2,32	3,71	8,62
Consumo total electricidad [kWh]	35000	3300 0	2900 0	14000	11100 0	37,00	3,71	137,43
Bomba de calorel consumo de electricidad medidokWh]	0	5769	3583	2315	11667	3,89	2,50	9,72
COP bomba de calor		3,71	2,79	0,91	3,85			3,85
AHU Electricidad todo el sistema de ventilacion [kWh]	10192	1048 1	1004 0	5150	35863	11,95	3,71	44,40
Toda la electricidad HVAC [kWh]	17496	1590 5	1402 0	7460	54881	18,29	3,71	67,95
Electricidad resto HVAC [kWh]	7304	-345	397	-5	7351	2,45	3,71	9,10
Otra electricidad + iluminación [kWh]	17504	1709 5	1498 0	6540	56119	18,71	3,71	69,48

. ANALISIS ENERGETICO. Realidades

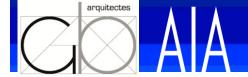
> Ideal vs medido



CAP Roger de Flor

ANALISIS ENERGETICO. Realidades

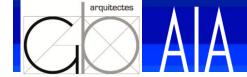
→ RdF vs Larrard



CAP	Consumo eléctrico TOTAL	Consumo eléctrico CLIMATITZACIÓN		
	kWh _e /m² - dia	kWh _e /m² - dia		
Larrard	0,28	0,15		
Roger de Flor	0,36	0,18		

Comparación:

Horas de funcionamiento: RdF 18 horas contra 12 de Larrard: factor 1,5


CAP	Consumo eléctrico TOTAL	Consumo eléctrico CLIMATITZACIÓN	COP de las Enfriadoras- Bombas de Calor	
	kWh _e /T _L m² - dia	kWh _e /T _L m ² - dia		
Larrard	0,28	0,15	2,3	
Roger de Flor	0,24	0,12	3,6	
Ahorro Energético de RdF respecto L	-14,3%	-20,0%	56,5%	

Links:

- www.catsalut.cat
- www.icaen.es
- www.sara-project.net
- www.ecobuildings.info
- www.aia.cat
- www.controlli.es
- www.ecobuildings.info
- www.eapdretaeixample.com

CAP ROGER DE FLOR

Fecha: 15 de mayo 2.007

CONSTRUMAT